Machine Learning6 [Machine Learning] 데이터 전처리(2) - Imbalanced class(1) 데이터 전처리(1): https://insighted-h.tistory.com/16 [Machine Learning] 데이터 전처리(1) - 결측치 처리(1) 데이터 분석을 하기 위해서 데이터의 전처리는 필수적이다. 데이터들을 수집해서 나온 가공되지 않은 데이터는 분석을 바로 할 수가 없는 상태이다. (결측치의 존재, 이상치의 존재, 여러 데이 insighted-h.tistory.com 이전 포스팅에서는 결측치를 다루는 방법에 대해서 알아보았다. 현실 데이터에서는 우리가 예측하고자 하는 클래스가 불균형할 때가 흔하다. 대표적인 예로 다음과 같은 상황이 있다. 신용카드 사기 탐지: 신용카드 거래에서 사기 거래는 정상적인 거래에 비해 매우 드문 케이스 스팸 메일 분류하기: 스팸 메일 vs 정상 메일 불량품 .. 2023. 8. 18. [Machine Learning] 데이터 전처리(1) - 결측치 처리(1) 데이터 분석을 하기 위해서 데이터의 전처리는 필수적이다. 데이터들을 수집해서 나온 가공되지 않은 데이터는 분석을 바로 할 수가 없는 상태이다. (결측치의 존재, 이상치의 존재, 여러 데이터 타입의 혼재, ...) 만약 이러한 데이터를 가지고 바로 모델링을 한다면 데이터의 잡음으로 인해 우리가 모델의 결과가 굉장히 안 좋을 것이다. 혹은 모델이 아예 학습을 하지 못할 수도 있을 것이다. 그러면 가장 선행되어야 하는 전처리 작업은 무엇일까? 그것은 바로 결측치 (Missing values)를 처리하는 것이다. 결측치는 다음과 같이 크게 세 가지 유형으로 나눌 수 있다. 1. MCAR(Missing Completely At Random) 데이터가 missing난 이유가 데이터와 무관하게 발생한 것을 말한다. .. 2023. 6. 22. [Machine Learning] 손실 함수 (loss function) 머신러닝에서 모델 학습을 시키면 평가지표로써 손실 함수가 등장한다. 손실 함수의 값은 모델이 실제값에 대해서 얼마나 잘 예측했냐를 판가름하는 좋은 지표가 된다. 손실 함수의 값이 작아지면 작아질수록, 모델은 더욱더 예측을 잘하게 된다. 따라서 머신러닝에서 성능을 향상시키기 위해 손실함수를 최소화시키는 방안을 찾게 된다. 손실 함수는 측정 방법에 따라 여러 가지가 존재하게 된다. 사용하는 함수는 각 함수의 특성에 따라 상황에 적절한 함수를 사용한다. 1. MSE (Mean Squared Error) 이름에서 알 수 있듯이 평균제곱오차이다. MSE는 가장 기본적이고 간단한 손실 함수이다. 손실함수의 값은 전체 데이터셋에 대해서 실제값과 예측값의 차이를 제곱한 후 평균을 낸 값이다. 통계학에서의 분산과 비슷한.. 2023. 1. 31. [Machine Learning] 분류 알고리즘 머신러닝 알고리즘 중에서 분류는 직관적이면서 가장 기초적인 알고리즘이다. 분류로 해결할 수 있는 대표적인 문제들을 예로 들자면, 타이타닉 데이터셋으로부터 생존자 예측하기 (생존 or 사망) 고객들의 금융 데이터셋으로부터 대출 가능 여부 예측하기 (가능 or 불가능) 1~10까지의 숫자 이미지가 들어있는 MNIST 데이터셋으로부터 해당 숫자가 몇인지 분류하기 이처럼 데이터셋으로부터 특징들을 파악하여 모델을 학습시키고, 분류 결과를 도출해낸다. 분류 알고리즘은 어떤 것들이 있을까? 아래는 머신러닝에서 주로 사용하는 알고리즘들이다. 1. Logistic Regression (로지스틱 회귀모형) 첫 번째로 자주 사용하는 분류 모델은 Logistic Regression이다. 이름에 회귀라는 말이 들어가있어서 처음.. 2023. 1. 29. 이전 1 2 다음